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Discrete Burridge-Knopoff model, with exact solitonic or compactlike traveling wave solution
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We have explored the dynamics of two versions of a Burridge-Knopoff model: with linear or nonlinear
interactions between adjacent blocks. We have shown that by properly choosing the analytical form of the
discrete solitary wave solution of the model we can calculate analytically the form of the friction function. In
both cases our analytical results show that the friction force naturally presents the behavior of a simple
weakening friction law first introduced qualitatively by Burridge and Knopoff@Bull. Seismol. Soc. Am.57,
3411~1967!# and quantitatively by Carlson and Langer@Phys. Rev. Lett.62, 2632~1989!#. With such a force
function the discrete solitonic or compactlike wave-front solutions are exact and stable solutions. In the case of
linear coupling our numerical simulations show that an irregular initial state evolves into kink pairs~large-
amplitude events!, that can recombine or not, plus nonlinear localized modes and small linear oscillations
~small-amplitude events! that disperse with time, owing to dispersion. For nonlinear coupling one observes
compactlike kink pairs or shocks, and a background of robust incoherent nonlinear oscillations~small ampli-
tude events! that persist with time. Our results show that discreteness is a necessary ingredient to observe a rich
and complex dynamical behavior. Nonlinearity allows the existence of strictly localized shocks.

DOI: 10.1103/PhysRevE.65.026615 PACS number~s!: 42.81.Dp, 42.65.Sf, 42.65.Re, 42.65.Ky
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I. INTRODUCTION

Recently, excitable media with elastic rather than dif
sive coupling between spatial elements have been inv
gated @1,2#. Among the systems of special interest are
elastic media with friction, which exhibit stick-slip motion
In this context the discrete spring-block model@3#, originally
introduced by Burridge and Knopoff~BK! ~1967! and inten-
sively studied by Carlson and Langer~1989! @4#, has re-
gained considerable attention since Bak and Tang@5# sug-
gested that crustal faults may exhibit a phenomenon kno
as ‘‘self-organized criticality.’’ The idea is that many system
in nature, a sand pile, an avalanche or the earth’s crus
example, are driven by external forces in such a way t
they are always at or near a threshold of instability and mi
be expected to exhibit anomalously large ‘‘critical’’ fluctu
tions.

The standard BK model, which was originally introduc
in order to reproduce the gross features of the statistic
real earthquakes, describes the dynamics of a slowly dr
slider-block chain in the presence of a nonlinear friction e
hibiting a velocity softening instability. The friction law is a
essential ingredient of this dynamical behavior. In this co
text, numerous slider-block models have been studied~see
@6# for a review and@7# for an extensive reference list!. They
have been used to explore the role of friction along a faul
a factor in the earthquake dynamics and are capable of
porting steadily propagating solitary waves into the form
shocks@8–11#. Very recently, a continuum version of the B
system with an asymptotically velocity strengthening fricti
model@1# or with a Coulomb friction model@2# were studied
as excitable media. It was suggested that this type of ela
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medium may have applications beyond laboratory fricti
experiments to electronic transmission lines and active o
cal waveguides@1#.

As far as we know, in all these approaches different v
sions of the friction law were postulated and no analyti
study of the discrete BK model has been performed. As
friction law represents the key nonlinearity leading to co
plex behavior, and knowing that discreteness effects m
play a role@12# in the spatiotemporal behavior of earthqua
occurrence, it is extremely important to develop the ba
concepts with the help of simple models.

The purpose of this paper is to make some progress in
understanding of the effects of discreteness and nonlin
interactions, respectively, on the dynamical behavior o
one-dimensional slider-block model. The paper is organi
as follows: In Sec. II we investigate a discrete BK mod
where the blocks execute linear interactions. In Sec. III,
examine the case of nonlinear interactions. For both case
construct exact kink or wave-front solutions, that is contra
to all the previous investigations where a friction model h
been assumed, we adopt an inverse procedure~see@13# and
references therein!. Indeed, we show that by properly choo
ing the analytical expression of the discrete solitary wa
solution of the model we can analytically calculate the fo
of the friction function. Since in a real system some deg
of heterogeneity should be present, we next explore by
merical simulations the complex dynamics of the model
sulting from an irregular initial state. Finally, in the last se
tion we give some concluding remarks.

II. BK MODEL WITH LINEAR COUPLING

The BK model describes the contact region between
tectonic plates. It consists~as schematically represented
Fig. 1! of a one-dimensional array ofN identical blocks of
©2002 The American Physical Society15-1
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massm coupled by springs of stiffnesskc and equilibrium
lengtha. Each block is linked to the upper plate by a spri
of stiffnesskp . The blocks resting on the frictional surface
the lower plate are pulled by the upper plate, which move
constant~driving tectonic! velocity V, against the frictional
forceF. If Xn is the displacement of thenth block, the equa-
tion of motion reads as

m
d2Xn

dt2
5kc@~Xn212Xn!q1~Xn112Xn!q#2kp~Xn2Vt!

2F~Ẋn!, ~1!

whereẊn is the velocity at siten. When parameterq is equal
to 1, we have the standard BK model with linear coupli
that we will study in the present section.

Let us introduceXn5X0cn , whereX0 is a constant, and
settingvp5Akp /m, t85vpt, v5V/X0vp , g51/kpX0 , and
K5kc /kp we obtain the following dimensionless equatio
for cn :

d2cn

dt82 5K~cn1122cn1cn21!2~cn2vt8!2gF~ ċn!.

~2!

It is important to note that if we ignore thecn2vt8 term and
expressċn as a function ofcn Eq. ~2! will become identical
to the model equation~2.1! in @13#.

In fact, since Eq.~2! is nondissipative,F(cn) is a pseud-
ofriction force. As we shall see in the following, our nondi
sipative approach is justified by the consideration of dyna
cal events that correspond to a velocity weakening regi
We next assume@14# that Eq.~2! has a solution in the form
of a nondissipative wave train described by a Jacobi ellip
function of parameterp,

cn~z!5sn~z,p!. ~3!

Here, z5Vt2kna, k and V5v/vp are two constants.c
5V/k represents the velocity of the wave. Now, followin
an inverse procedure, we first insert Eq.~3! in Eq. ~2! in
order to calculate the quantityF(ċn) as a function ofcn and
express all termscn as a function ofċn . Thus we have the
following steps

dcn

dt8
5Vcn~z!dn~z!5VA~12cn

2!~12p2c2!, ~4!

FIG. 1. Mechanical Burridge-Knopoff earthquake model. It co
sists of a chain of massm coupled by springs of stiffnessKc , linked
to an upper plate by springs of stiffnessKp and pulled at constan
velocity V against a nonlinear frictional forceF.
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d2cn

dt82 522V2cn@~11p2!22p2cn
2#, ~5!

cn111cn2122cn52cnFA~12j2!~12p2j2!

12p2j2cn
2 21G .

~6!

Herej5sn(ka,p) represents adiscreteness parameteras we
shall see below. From Eq.~4!, we can expresscn vs ċn , in
Eqs.~5! and~6!. Under these conditions, after some lengt
but simple calculations we get

F~ ċn!5
1

g
AgF2KSA~12j2!~12p2j2!

12j2g
21D 21

1V2$~11p2!22p2g%G2
vt8

lV
,

with g5

~11p2!6F ~11p2!224p2S 12
ċn

2

V2D G1/2

2p2 . ~7!

Equation~2! with F(ḟn) given by Eq.~7! admits Eq.~3! as
an exact general periodic solution.

Now, in the context of this paper we restrict ourselves
the casep51, that is, to a localized kink-shaped solution
solitonic shock front such as

cn5sn~z,1!5tanh~z!, ~8!

with j5sn(ka,1)5tanh(ka). In this case, after settingfn
5cn /lV, with l5(12j2)/j2, Eq. ~7! reduces to

F~ḟn!5 f n2vt8/~lV!

with

f n5
1

lV
sgn~ḟn!A12luḟnu

3F2lV2UḟnU12KS 1

11uḟnu
21D 21G . ~9!

In order to ensure the symmetry off n with respect to zero,
we have replacedḟn by uḟnu. We have checked that thi
modification does not change the properties of the mo
Finally, substituting Eq.~9! in Eq. ~2! yields

d2fn

dt2
5K~fn1122fn1fn21!2fn2 f n . ~10!

The discrete equation of motion~10! with the nonlinear fric-
tion term f n given by Eq.~9! admits

fn5
1

lV
tanh~Vt2kna!, ~11!

as an exact solitonlike solution.

-
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This solitary wave solution corresponds to the dynami
regime. Since the so called loading termvt8 is no more
present in Eq.~10! our result implies to consider dynamic
events~kinks! that occur at some fixed state of stress alo
the fault @15#.

Nonlinear friction force.In Eq. ~10!, to each~V, k! cor-
responds a different forcef n and velocity c. We have
checked numerically that the discrete kink or wave-front
lution described by Eq.~11! can propagate stably, withou
emitting small radiations. In Fig. 2 the evolution off n ~con-
tinuous curve! as a function ofḟn is illustrated in the dis-
crete regime~weak coupling!, with j50.964,v51, andK
50.1. f n naturally presents the behavior of a simple veloc
weakening friction law with instability or static friction dis
continuity at zero velocity (ḟn50). Interestingly, by assum
ing a tanh-shaped wave-front solution we have obtaine
frictional force f n that exhibits the same type of behavior
for the friction force first introduced qualitatively by Burr
idge and Knopoff@3# and quantitatively by Carlson an
Langer@4# and Carlson, Langer, and Shaw@6#.

Evolution of an irregular initial state.It is clear that in a
real system some degree of irregularity~spatial noise! should

FIG. 2. Structure of the frictional forcef n(ḟn) ~continuous

lines! andgn(ċn) ~dotted lines! for parametersj5tanh(2).0.964,
v51, and K50.1. It presents the behavior of a simple veloc
weakening friction law introduced qualitatively by Burridge an
Knopoff and quantitatively by Carlson and Langer. In this figure
the quantities are given in normalized units.
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be present, and it is important to know whether comp
behavior~seismicity! is due to~fault! heterogeneity or non-
linear dynamics.

With this in mind, we have investigated the evolution
an arbitrary distribution ofN blocks whose positions are ini
tialized by imposing a weak spatial perturbation~white
noise!. At time ta ~see Fig. 3!, small-amplitude block mo-
tions appear. Then, after a while, we observe that so
blocks can execute very large amplitude oscillations, mu
larger ~about ten times! than the maximum amplitude of th
original perturbation~noise! and can reach critical state o
stressA1 or A2 ~see Fig. 2!. As a result two kink pairs@~a!
and~b!# can emerge~time t1 in Fig. 3! and combine to give
a kink and an antikink, that separate from each other. F
thermore, a stationary nonlinear localized mode appears
oscillates with time~t2 and t3 in Fig. 3!. On the other hand
a discrete kink pair~c! can keep a constant profile and prop
gate to the right as a stable and robust pulse. These dis
wave fronts can travel freely along the lattice, because, st
solutions exist, as considered above.

We have also examined~not represented here! the evolu-
tion of an irregular initial state when the discreteness para
eter isj5tanh(0.5).0.462, which corresponds to a stron
coupling (K510,vc51) or continuum regime. In this case
to observe the emergence of at least one kink pair, we n
to increase drastically~three times! the rms noise amplitude
If one further increases the rms amplitude no other kink p
emerges. Thus, our results show that the dynamical beha
of the continuum regime is very poor compared to the d
crete regime where many kink pairs can be created.

Then, for a chain ofN5200 blocks, we have investigate
the birth probability of at least one kink pair or one eve
when the number of blocks initialized by a small perturb
tion ~noise! is N53, 10, 50, while the other blocks are a
rest. As shown in Fig. 4 the probability to obtain at least o
event increases~continuous curve! strongly with the number
of initialized blocks for the same initial noise amplitude. Th
result is not surprising since more energy is fed into
system.

III. BK MODEL WITH NONLINEAR COUPLING

In a real system~real fault!, the interaction forces betwee
blocks are not necessarily linear. They may be of the cont
type, like in a granular medium. With this assumption
mind we have investigated a BK model with nonlinear co
pling @q53 in Eq. ~2!#,

l

y

n,

d

able
FIG. 3. Space-time evolution of an arbitrar
initial state. Total number of blocksNT5200,
number of excited blocksN550. Parameters:j
5tanh(2).0.964,v51, andK50.1. At time t0

small amplitude block motions appear. The
three kink pairs~a!, ~b!, and ~c! emerge. They
combine~time t2! to give a propagating kink and
antikink plus a stationary nonlinear localize
mode that oscillates in time. The antikink pair~c!,
keeps a constant profile and propagate as a st
and robust pulse.
5-3
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d2cn

dt2
5v0

2@~cn112cn!32~cn2cn21!3#2cn2G~ ċn!.

~12!

In Eq. ~12! the power law~cubic!-type interaction suggest
to assume that the shock solutions are strictly localized
compactlike@16–20#, such as

cn5sin~s!, if sP@2p/2,1p/2#,

cn521 if sP@2`,2p/2#,

cn511, if sP@1p/2,1`#. ~13!

Contrary to the linear model of Sec. II, where the tan
shaped wave-front solution extends asymptotically to in
ity, solution~13! has the advantage of taking into account t
finite spatial extent of a wave front along the fault. Note th
like in Sec. II, we have setvt850, since we consider dy
namical events~kinks! that occur at some fixed state o
stress.

Proceeding as in Sec. II, after simple calculations we g

FIG. 4. Probability to obtain at least one event vs amplitu
perturbation, for three different numbers of blocks initializedN
53, N510, N550) on a chain of 200 blocks, others are at re
~solid and dashed lines corresponding respectively to linear c
pling and nonlinear coupling of BK model!.
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G~cn!5acn1bcn
3 ~14!

with

a5v226v0
2~t32t22r 11!21,

b54v0
2~123t212t3!, ~15!

t5cos~ka!.

Sincecn5A12ċn
2/v2, we finally obtain

G~ ċn!5gn5sgn~ ċn!S 12
ċn

2

v2D Fa1bS 12
ċn

2

v2D G .

~16!

As shown in Fig. 2~dotted lines! the pseudofriction function
gn has the same general form asf n .

Thus, withgn given by Eq.~16! the modified discrete BK
model admits exact compactlike solution given by Eq.~13!.
We have checked by numerical simulations, that fort
<&/2 ~kink width >6a! an exact solution given by Eq.~13!
can propagate freely. Fort.&/2 ~kink width ,6a!, dis-
creteness effects appear: small nonlinear stationary osc
tions are emitted during the kink propagation.

Next, we have investigated head on collisions betwe
compactlike kink and antikink. For example, witht<&/2
the collision~not represented here! between a kink and anti
kink of width 2a is pseudoelastic. The two kinks or shoc
emerge with lower velocities, and a stationary nonlinear
calized mode and small-amplitude nonlinear oscillations
created. Since the width of the localized mode is about 2a,
we have been unable to determine whether or not its shap
compactlike.

Evolution of an irregular initial state.Like for the linear
BK model ~see Sec. II!, we have investigated the evolutio
of an initial noisy state, with the same kind of physical p
rameters@t5cos(2).20.416,v51, K50.1, NT5200#. As
shown in Fig. 5, small nonlinear oscillations appear in t
beginning of the dynamics~time t0 , t1 , and t2!, then one
observes the emergence~time t3! of a kink pair dressed with
oscillations. This pair~time t4! evolves into a static compact
like antikink ~in the presence of oscillations! and a traveling
compactlike kink. In some simulations~not represented here!
instead of static antikink one, one can observe a trave
one.

e

t
u-
y

n,

-
in
nd
FIG. 5. Space-time evolution of an arbitrar
initial state. Total number of blocksNT5200,
number of excited blocksN550. Parameterst
5cos(2).20.416,v51, andK50.1. At time t0

small-amplitude blocks motions appear. The
kink-antikink pair emerges att1 , disappears at
t2 , and reappears att3 . The kink propagates
freely to the right and the antikink remains im
mobile. Nevertheless, it may travel as observed
other simulations with the same parameters a
irregular initial condition.
5-4
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In the strong coupling or continuum regime@with dis-
creteness parameter:t5cos(0.4)50.9, K510, v51# our
simulations~not represented here! show that no compactlike
kink pair emerge from the initial state even for large rm
noise amplitude.

Then, like in Sec. II, we have investigated the birth pro
ability of at least one kink pair or one event, represented
Fig. 4 ~dotted curves!. For N53 or N510, the event prob-
ability does not increase so rapidly than for the linear B
model~continuous curves!. For N550, the slopes tend to b
the same.

IV. CONCLUSION

We have explored the dynamics of a discrete BK mo
with linear or nonlinear interactions between adjac
blocks. We have first shown that by properly choosing
analytical form of the discrete solitary wave solution of t
model we can analytically calculate the form of the frictio
function. For linear coupling the kink solutions are tan
shaped with infinitesimal wings extending to infinity. F
nonlinear coupling the compactlike kink solutions are sin
shaped and strictly localized: with no wings. In both cas
our analytical results show that the friction force natura
presents the behavior of a simple weakening friction law fi
introduced qualitatively by Burridge and Knopoff@3# and
quantitatively by Carlson and Langer@4#.
ys
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In the case of linear coupling our numerical simulatio
show that an irregular initial state evolves into several k
pairs that can separate, recombine or travel, plus local
modes and small linear oscillations that disperse with tim
owing to dispersion. In the strong coupling~continuum! re-
gime the dynamical behavior of the system is not so r
since only one kink pair emerges from the noisy initial sta

For nonlinear coupling one observes the emergence
compactlike kink pairs, which can separate into kinks tra
eling in opposite directions, and a background of robust
coherent nonlinear oscillations that survive with time. In t
strong coupling or continuum regime no compactlike ki
pair can emerge from the irregular initial state.

In both models discreteness is at the origin of a rich a
complex dynamical behavior. It allows the creation of ma
narrow traveling kinks or shock fronts. Nonlinear couplin
allows the existence of propagating kinks or shocks that
compactlike, that is, strictly localized. In the context of se
mic events, the picture of narrow and compactlike sho
should be more realistic than the picture of solitonic sho
with asymptotic wings.

The model studied here is a simple caricature of a r
system. Nevertheless, the results of this study, which ta
into account the two important ingredients: discreteness
nonlinear coupling, should provide some guidance ab
how to make more realistic, predictive models of seism
phenomena.
21

E

@1# J. H. E. Cartwright, E. Hernandez-Garcia, and O. Piro, Ph
Rev. Lett.79, 527 ~1997!.

@2# C. B. Muratov, Phys. Rev. E59, 3847~1999!.
@3# R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am.57, 3411

~1967!.
@4# J. M. Carlson and J. S. Langer, Phys. Rev. Lett.62, 2632

~1989!.
@5# P. Bak and C. Tang, J. Geophys. Res.,@Space Phys.# 94, 15 635

~1989!.
@6# J. M. Carlson, J. S. Langer, and B. E. Shaw, Rev. Mod. Ph

66, 657 ~1994!.
@7# D. L. Turcotte,Fractals and Chaos in Geology and Geophy

ics, 2nd ed. ~Cambridge University Press, Cambridge, E
gland, 1997!.

@8# J. Schmittbuhl, J. P. Villotte, and S. Roux, Europhys. Lett.21,
375 ~1993!.

@9# P. Espanol, Phys. Rev. E50, 227 ~1994!.
.

s.

@10# M. A. Rubio and J. Galeano, Phys. Rev. E50, 1000~1994!.
@11# Z. L. Wu and Y. T. Chen, Nonlinear. Proc. Geophys. 1

~1998!.
@12# J. R. Rice, J. Geophys. Res.,@Space Phys.# 98, 9885~1993!.
@13# J. C. Comte, P. Marquie´, and M. Remoissenet, Phys. Rev.

60, 7484~1999!.
@14# M. H. Jensen, P. Per Bak, and A. Popielewicz, J. Phys. A16,

4369 ~1983!.
@15# J. S. Langer and C. Tang, Phys. Rev. Lett.67, 8 ~1991!; Inter-

faces64, 1 ~1990!.
@16# P. Rosenau and J. M. Hyman, Phys. Rev. Lett.70, 564 ~1993!.
@17# P. Rosenau, Phys. Rev. Lett.73, 1734~1994!.
@18# P. Rosenau, Phys. Rev. Lett.252, 297 ~1999!, and references

therein.
@19# B. Dey and A. Khare, Phys. Rev. E58, R2741~1998!.
@20# M. Remoissenet,Waves Called Solitons, 3rd ed. ~Springer-

Verlag, Berlin, 1999!.
5-5


