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Discrete Burridge-Knopoff model, with exact solitonic or compactlike traveling wave solution

J. C. Comté* P. Tchofo Dind& and M. Remoissenet
!Physics Department, University of Crete and Foundation for Research and Technblieitgs, P.O. Box 2208,
71003 Heraklion, Crete, Greece
2Laboratoire de Physique, Universitic Bourgogne (LPUB), 9 Avenue A. Savary,tBdtostal 400, 21011 Dijon, France
(Received 27 August 2001; published 25 January 2002

We have explored the dynamics of two versions of a Burridge-Knopoff model: with linear or nonlinear
interactions between adjacent blocks. We have shown that by properly choosing the analytical form of the
discrete solitary wave solution of the model we can calculate analytically the form of the friction function. In
both cases our analytical results show that the friction force naturally presents the behavior of a simple
weakening friction law first introduced qualitatively by Burridge and Knop@fll. Seismol. Soc. Am57,
3411(1967] and quantitatively by Carlson and Land&hys. Rev. Lett62, 2632(1989]. With such a force
function the discrete solitonic or compactlike wave-front solutions are exact and stable solutions. In the case of
linear coupling our numerical simulations show that an irregular initial state evolves into kink(lzags-
amplitude evenjs that can recombine or not, plus nonlinear localized modes and small linear oscillations
(small-amplitude eventshat disperse with time, owing to dispersion. For nonlinear coupling one observes
compactlike kink pairs or shocks, and a background of robust incoherent nonlinear oscillatr@sampli-
tude eventsthat persist with time. Our results show that discreteness is a necessary ingredient to observe a rich
and complex dynamical behavior. Nonlinearity allows the existence of strictly localized shocks.
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[. INTRODUCTION medium may have applications beyond laboratory friction
experiments to electronic transmission lines and active opti-
Recently, excitable media with elastic rather than diffu-cal waveguide$1].
sive coupling between spatial elements have been investi- As far as we know, in all these approaches different ver-
gated[1,2]. Among the systems of special interest are thesions of the friction law were postulated and no analytical
elastic media with friction, which exhibit stick-slip motion. Study of the discrete BK model has been performed. As the
In this context the discrete spring-block mo@i], originally ~ friction law represents the key nonlinearity leading to com-
introduced by Burridge and KnopofBK) (1967 and inten-  Pplex behavior, and knowing that discreteness effects may
sively studied by Carlson and Langé€t989 [4], has re- play a role[12] in the spatiotemporal behavior of earthquake
gained considerable attention since Bak and TEslgsug- ~ occurrence, it is extremely important to develop the basic
gested that crustal faults may exhibit a phenomenon knowgoncepts with the help of simple models.
as “self-organized criticality.” The idea is that many systems  The purpose of this paper is to make some progress in the
in nature, a sand pile, an avalanche or the earth’s crust fatnderstanding of the effects of discreteness and nonlinear
example, are driven by external forces in such a way thalteractions, respectively, on the dynamical behavior of a
they are always at or near a threshold of instability and mighpne-dimensional slider-block model. The paper is organized
be expected to exhibit anomalously large “critical” fluctua- @s follows: In Sec. Il we investigate a discrete BK model
tions. where the blocks execute linear interactions. In Sec. I, we
The standard BK model, which was originally introduced €xamine the case of nonlinear interactions. For both cases we
in order to reproduce the gross features of the statistics dgfonstruct exact kink or wave-front solutions, that is contrary
real earthquakes, describes the dynamics of a slowly drivefp all the previous investigations where a friction model has
slider-block chain in the presence of a nonlinear friction ex-been assumed, we adopt an inverse procetkee[13] and
hibiting a velocity softening instability. The friction law is an references therejnindeed, we show that by properly choos-
essential ingredient of this dynamical behavior. In this coning the analytical expression of the discrete solitary wave
text, numerous slider-block models have been studses  Solution of the model we can analytically calculate the form
[6] for a review and 7] for an extensive reference lisThey of the friction function. Since in a real system some degree
have been used to explore the role of friction along a fault a®f heterogeneity should be present, we next explore by nu-
a factor in the earthquake dynamics and are capable of suprerical simulations the complex dynamics of the model re-
porting steadily propagating solitary waves into the form ofsulting from an irregular initial state. Finally, in the last sec-
shockg8—11]. Very recently, a continuum version of the BK tion we give some concluding remarks.
system with an asymptotically velocity strengthening friction
model[_l] or with a Coulomb friction mod€2] were studied _ Il BK MODEL WITH LINEAR COUPLING
as excitable media. It was suggested that this type of elastic
The BK model describes the contact region between two
tectonic plates. It consist@s schematically represented in
*Electronic address: comte@physics.uoc.gr Fig. 1) of a one-dimensional array & identical blocks of

1063-651X/2002/6&)/02661%5)/$20.00 65 026615-1 ©2002 The American Physical Society



J. C. COMTE, P. TCHOFO DINDA, AND M. REMOISSENET PHYSICAL REVIEW &5 026615

d?y,
Gz = 2020 [(1+p%) —2p%), 5

J(l—éz)(l—pzéz)_l}

U1t l/fn—1_2'lfn:2l/fn{ 1222

FIG. 1. Mechanical Burridge-Knopoff earthquake model. It con- (6)

to an upper pl_ate by springs of _stl_ffnesg and pulled at constant shall see below. From E@4), we can expresg, vs l;bn, in
velocity V against a nonlinear frictional forde. .

Egs.(5) and(6). Under these conditions, after some lengthy
but simple calculations we get

J(l—gz)(l—rﬂgz)_l)_

massm coupled by springs of stiffneds, and equilibrium

lengtha. Each block is linked to the upper plate by a spring 1

of stiffnessk, . The blocks resting on the frictional surface of F(g,)=— \/5[ 2K
Y

1
__ 2
the lower plate are pulled by the upper plate, which moves at 1=¢%9
constant(driving tectonig velocity V, against the frictional ot
forceF. If X,, is the displacement of theth block, the equa- +04(1+ pz)—2ng}} -3q
tion of motion reads as A
2\ 112
d2x ¥
M= =Kl (X 1= Xa) 34 (X 1= Xo) T KXy = V1) (1+p%)= <1+pz)2‘4pz( 1- ﬁf”
with g= 202 . (7)
—F(Xn), (1)

) Equation(2) with F(¢,,) given by Eq.(7) admits Eq.(3) as
whereX, is the velocity at siten. When parametey is equal an exact general periodic solution.
to 1, we have the standard BK model with linear coupling Now, in the context of this paper we restrict ourselves to
that we will study in the present section. the casep=1, that is, to a localized kink-shaped solution or
Let us introduceX,,= Xy, , whereX, is a constant, and solitonic shock front such as
settingw,= Vkp/m, t'=wpt, v=V/Xpw,, y=1KkXq, and

K=k¢/k, we obtain the following dimensionless equation Yn=sn(z,1)=tanhz), (8)
for 4 with ¢=sn(ka,1)=tanhka). In this case, after setting,
&y =, INQ, With A= (1— £2)/£?, Eq.(7) reduces to
| .
= =K( —2Ynt hp_1)— (Po—ot")—yF (). )
dt'2 Une1— 20t Pn-1 n YE(n o F(b)=f,—ot'/(AQ)

with
It is important to note that if we ignore thg,—vt’ term and
expressy, as a function of,, Eq. (2) will become identical

20072

én 9

1 . ——
to the model equatiof2.1) in [13]. fn:msgr(d’n) 1= |
sipative approach is justified by the consideration of dynami- X

cal events that correspond to a velocity weakening regime.

In fact, since Eq(2) is nondissipativel (¢,) is a pseud-
1
+2K( , —1)—1.
1+l
We next assumgl4] that Eq.(2) has a solution in the form

ofriction force. As we shall see in the following, our nondis-
of a nondissipative wave train described by a Jacobi elliptidn order to ensure the symmetry &f with respect to zero,

function of parametep, we have replaced, by |¢,|. We have checked that this
modification does not change the properties of the model.
Ya(2)=sn(z,p). (3) Finally, substituting Eq(9) in Eq. (2) yields
2
Here, z=Qt—kna, k and )= w/w, are two constantsc d ¢n:K od + b f 1
=Q/k represents the velocity of the wave. Now, following dt? (¢n+1= 260+ dn1) = dn=Tn. (10

an inverse procedure, we first insert E8) in Eq. (2) in
order to calculate the quantiBy(¢,,) as a function of},, and

express all termg,, as a function of[ﬁn. Thus we have the
following steps

The discrete equation of motiqia0) with the nonlinear fric-
tion termf,, given by Eq.(9) admits

1
¢>n=)\—Qtanr(Qt—kna), (12

%=an<z>dn<z)=w(1—w2>(1—p2¢2> @)
dt’ n ’ as an exact solitonlike solution.
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20 - - - - T be present, and it is important to know whether complex
behavior(seismicity is due to(fault) heterogeneity or non-
linear dynamics.

With this in mind, we have investigated the evolution of
an arbitrary distribution oN blocks whose positions are ini-
tialized by imposing a weak spatial perturbatigwhite
noise. At time t, (see Fig. 3 small-amplitude block mo-
tions appear. Then, after a while, we observe that some
blocks can execute very large amplitude oscillations, much
larger (about ten timesthan the maximum amplitude of the
original perturbation(nois@ and can reach critical state of
stressA, or A_ (see Fig. 2 As a result two kink pair§(a)
and(b)] can emergdtime t; in Fig. 3) and combine to give
a kink and an antikink, that separate from each other. Fur-
. . . . thermore, a stationary nonlinear localized mode appears and
215 -10 5 0 5 10 15 oscillates with time(t, andts in Fig. 3). On the other hand,

:1’.:.14‘1., a discrete kink paitc) can keep a constant profile and propa-
gate to the right as a stable and robust pulse. These discrete

FIG. 2. Structure of the frictional forcd,(#,) (continuous wave fronts can travel freely along the lattice, because, stable
lines) andg,(#,) (dotted lines for parameters:=tanh(2)=0.964,  solutions exist, as considered above.
w=1, andK=0.1. It presents the behavior of a simple velocity =~ We have also examingghot represented heréhe evolu-
weakening friction law introduced qualitatively by Burridge and tion of an irregular initial state when the discreteness param-
Knopoff and quantitatively by Carlson and Langer. In this figure all eter is é=tanh(0.5}=0.462, which corresponds to a strong
the quantities are given in normalized units. coupling (K=10wy=1) or continuum regime. In this case,

to observe the emergence of at least one kink pair, we need

This solitary wave solution corresponds to the dynamicako increase drasticallfthree timesthe rms noise amplitude.
regime. Since the so called loading tewt' is no more |f one further increases the rms amplitude no other kink pair
present in Eq(10) our result implies to consider dynamical emerges. Thus, our results show that the dynamical behavior
events(kinks) that occur at some fixed state of stress alongof the continuum regime is very poor compared to the dis-
the fault[15]. crete regime where many kink pairs can be created.

Nonlinear friction force.In Eq. (10), to each((), k) cor- Then, for a chain o= 200 blocks, we have investigated
responds a different forcd, and velocity c. We have the birth probability of at least one kink pair or one event,
checked numerically that the discrete kink or wave-front sowhen the number of blocks initialized by a small perturba-
lution described by Eq(11) can propagate stably, without tion (noise is N=3, 10, 50, while the other blocks are at
emitting small radiations. In Fig. 2 the evolution ff (con-  rest. As shown in Fig. 4 the probability to obtain at least one
tinuous curve as a function of¢,, is illustrated in the dis- event increase&ontinuous curvestrongly with the number
crete regime(weak coupling, with £€=0.964,w=1, andK  of initialized blocks for the same initial noise amplitude. This
=0.1.f, naturally presents the behavior of a simple velocityresult is not surprising since more energy is fed into the
weakening friction law with instability or static friction dis- Ssystem.

continuity at zero velocity ¢,=0). Interestingly, by assum-

ing a tanh-shaped wave-front solution we have obtained a |, Bk MODEL WITH NONLINEAR COUPLING

frictional forcef, that exhibits the same type of behavior as

for the friction force first introduced qualitatively by Burr-  In areal systentreal fauly, the interaction forces between

idge and Knopoff[3] and quantitatively by Carlson and blocks are not necessarily linear. They may be of the contact-

Langer[4] and Carlson, Langer, and Sh&@i. type, like in a granular medium. With this assumption in
Evolution of an irregular initial statelt is clear that in a mind we have investigated a BK model with nonlinear cou-

real system some degree of irregulafigpatial noiseshould  pling [q=3 in Eq. (2)],

——,

Localized mode FIG. 3. Space-time evolution of an arbitrary
A initial state. Total number of blockdl;=200,
- > S number of excited block®l=50. Parametersé
=tanh(2)=0.964, w=1, andK=0.1. At timet,
I’_\’ small amplitude block motions appear. Then,
three kink pairs(a), (b), and (c) emerge. They

v \’
combine(time t,) to give a propagating kink and
"[_\; 1 1 >+ antikink plus a stationary nonlinear localized
(a) (b) © mode that oscillates in time. The antikink pé&dj,

keeps a constant profile and propagate as a stable
> and robust pulse.

-+
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! ‘ N0 ; ' ‘ () =ain+ B (14)
09} = ] _
with
0.8}
Y a=w2—6wg(7'3—7'2—r+1)—1,
3 o B=4wd(1-372+273), (15
2 os)
z r=cogka).
Z 04f
03 Since g, =\ 1— ¢/ w?, we finally obtain
0.2} - -
0.1} G(wn):gnZSQr(‘r//n)(l_Z; atp l_ag”-
0 : ' ‘ ' ‘ (16)
0 0.2 0.4 0.6 0.8 1 12

As shown in Fig. 2dotted line$ the pseudofriction function
0, has the same general form fs.
FIG. 4. Probability to obtain at least one event vs amplitude  Thus, withg, given by Eq.(16) the modified discrete BK
perturbation, for three different numbers of blocks initializéd (  model admits exact compactlike solution given by EtB).
=3, N=10,N=50) on a chain of 200 blocks, others are at rest\e have checked by numerical simulations, that for
(s_olld and das_hed lines (_:orrespondlng respectively to linear CoU=,/5/2 (kink width =6a) an exact solution given by E¢L3)
pling and nonlinear coupling of BK model can propagate freely. For>v2/2 (kink width <6a), dis-
dun creteness effects appear: small nonlinear stationary oscilla-
_ 2 N3, 31~y tions are emitted during the kink propagation.
a2 = ol ) = (Un= 1) "]~ ¥n = G(Yn)- Next, we have investigated hgadpon collisions between
(12 compactlike kink and antikink. For example, with=v2/2
the collision(not represented herbetween a kink and anti-
In Eq. (12) the power law(cubio-type interaction suggests kink of width 2a is pseudoelastic. The two kinks or shocks
to assume that the shock solutions are strictly localized ogmerge with lower velocities, and a stationary nonlinear lo-

Spatial noise maximum amplitude

compactlike[16—-20, such as calized mode and small-amplitude nonlinear oscillations are
created. Since the width of the localized mode is abayt 2
gp=sin(s), if se[—7/2,+7/2], we have been unable to determine whether or not its shape is
compactlike.
Yo=—1 if se[—o0,—7/2], Evolution of an irregular initial stateLike for the linear
BK model (see Sec. )| we have investigated the evolution
Yo=+1, if se[+m/2,+]. (13)  of an initial noisy state, with the same kind of physical pa-

rameterq 7=co0s(2=—0.416,w=1,K=0.1, Nt=200]. As
Contrary to the linear model of Sec. I, where the tanh-shown in Fig. 5, small nonlinear oscillations appear in the
shaped wave-front solution extends asymptotically to infin-beginning of the dynamicé&ime tq, t;, andt,), then one
ity, solution(13) has the advantage of taking into account theobserves the emergen@éme t3) of a kink pair dressed with
finite spatial extent of a wave front along the fault. Note that,oscillations. This paiftime t,) evolves into a static compact-
like in Sec. Il, we have sett’ =0, since we consider dy- like antikink (in the presence of oscillationand a traveling
namical eventskinks) that occur at some fixed state of compactlike kink. In some simulatiorisot represented here
stress. instead of static antikink one, one can observe a traveling

Proceeding as in Sec. Il, after simple calculations we getone.

Static front
FIG. 5. Space-time evolution of an arbitrary
t initial state. Total number of blockdl= 200,
t > number of excited block&=50. Parameters
2 J \ = c0s(2)=—0.416,w=1, andK =0.1. At timet,
t3 - small-amplitude blocks motions appear. Then,
¢ ' kink-antikink pair emerges dtt;, disappears at
Z—W\/wvw_:y—vv\, t,, and reappears at;. The kink propagates
t1 \-JKVL\/\/\/\I\/ freely to the right and the antikink remains im-
<4 : . .
— mobile. Nevertheless, it may travel as observed in
t . . .
— other simulations with the same parameters and
> irregular initial condition.
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In the strong coupling or continuum reginfeith dis- In the case of linear coupling our numerical simulations
creteness parameter=cos(0.4=0.9, K=10, w=1] our  show that an irregular initial state evolves into several kink
simulations(not represented hershow that no compactlike pairs that can separate, recombine or travel, plus localized
kink pair emerge from the initial state even for large rmsmodes and small linear oscillations that disperse with time,
noise amplitude. owing to dispersion. In the strong coupliigontinuun) re-

Then, like in Sec. II, we have investigated the birth prob-gime the dynamical behavior of the system is not so rich
ability of at least one kink pair or one event, represented irsince only one kink pair emerges from the noisy initial state.
Fig. 4 (dotted curves For N=3 or N=10, the event prob- For nonlinear coupling one observes the emergence of
ability does not increase so rapidly than for the linear BKkcOmpactlike kink pairs, which can separate into kinks trav-

model (continuous curves For N=50, the slopes tend to be €ling in opposite directions, and a background of robust in-
the same. coherent nonlinear oscillations that survive with time. In the

strong coupling or continuum regime no compactlike kink
pair can emerge from the irregular initial state.

In both models discreteness is at the origin of a rich and

We have explored the dynamics of a discrete BK modekcomplex dynamical behavior. It allows the creation of many
with linear or nonlinear interactions between adjacentarrow traveling kinks or shock fronts. Nonlinear coupling
blocks. We have first shown that by properly choosing theallows the existence of propagating kinks or shocks that are
analytical form of the discrete solitary wave solution of the compactlike, that is, strictly localized. In the context of seis-
model we can analytically calculate the form of the friction mic events, the picture of narrow and compactlike shocks
function. For linear coupling the kink solutions are tanh-should be more realistic than the picture of solitonic shocks
shaped with infinitesimal wings extending to infinity. For with asymptotic wings.
nonlinear coupling the compactlike kink solutions are sine- The model studied here is a simple caricature of a real
shaped and strictly localized: with no wings. In both casesystem. Nevertheless, the results of this study, which takes
our analytical results show that the friction force naturallyinto account the two important ingredients: discreteness and
presents the behavior of a simple weakening friction law firsnonlinear coupling, should provide some guidance about
introduced qualitatively by Burridge and Knopdf8] and how to make more realistic, predictive models of seismic
guantitatively by Carlson and Langpt]. phenomena.

IV. CONCLUSION
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